Zeng, W., Conibear, P. B., Dickens, J. L., Cowie, R. A., Wakelin, S., Málnási-Csizmadia, A. & Bagshaw, C. R.

Dynamics of actomyosin interactions in relation to the cross-bridge cycle.

Philos Trans R Soc Lond B Biol Sci 359, 1843-55.

Transient kinetic measurements of the actomyosin ATPase provided the basis of the Lymn-Taylor model for the cross-bridge cycle, which underpins current models of contraction. Following the determination of the structure of the myosin motor domain, it has been possible to introduce probes at defined sites and resolve the steps in more detail. Probes have been introduced in the Dicytostelium myosin II motor domain via three routes: (i) single tryptophan residues at strategic locations throughout the motor domain; (ii) green fluorescent protein fusions at the N and C termini; and (iii) labelled cysteine residues engineered across the actin-binding cleft. These studies are interpreted with reference to motor domain crystal structures and suggest that the tryptophan (W501) in the relay loop senses the lever arm position, which is controlled by the switch 2 open-to-closed transition at the active site. Actin has little effect on this process per se. A mechanism of product release is proposed in which actin has an indirect effect on the switch 2 and lever arm position to achieve mechanochemical coupling. Switch 1 closing appears to be a key step in the nucleotide-induced actin dissociation, while its opening is required for the subsequent activation of product release. This process has been probed with F239W and F242W substitutions in the switch 1 loop. The E706K mutation in skeletal myosin IIa is associated with a human myopathy. To simulate this disease we investigated the homologous mutation, E683K, in the Dictyostelium myosin motor domain.

Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y., Gejyo, F. & Naiki, H.

Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH.

Biochemistry 43, 11075-82.

In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.

Villanueva, J., Hoshino, M., Katou, H., Kardos, J., Hasegawa, K., Naiki, H. & Goto, Y.

Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis.

Protein Sci 13, 797-809.

A key pathological event in dialysis-related amyloidosis is the fibril formation of beta(2)-microglobulin (beta 2-m). Because beta 2-m does not form fibrils in vitro, except under acidic conditions, predisposing factors that may drive fibril formation at physiological pH have been the focus of much attention. One factor that may be implicated is Cu(2+) binding, which destabilizes the native state of beta 2-m and thus stabilizes the amyloid precursor. To address the Cu(2+)-induced destabilization of beta 2-m at the atomic level, we studied changes in the conformational dynamics of beta 2-m upon Cu(2+) binding. Titration of beta 2-m with Cu(2+) monitored by heteronuclear NMR showed that three out of four histidines (His13, His31, and His51) are involved in the binding at pH 7.0. (1)H-(15)N heteronuclear NOE suggested increased backbone dynamics for the residues Val49 to Ser55, implying that the Cu(2+) binding at His51 increased the local dynamics of beta-strand D. Hydrogen/deuterium exchange of amide protons showed increased flexibility of the core residues upon Cu(2+) binding. Taken together, it is likely that Cu(2+) binding increases the pico- to nanosecond fluctuation of the beta-strand D on which His51 exists, which is propagated to the core of the molecule, thus promoting the global and slow fluctuations. This may contribute to the overall destabilization of the molecule, increasing the equilibrium population of the amyloidogenic intermediate.

Szenthe, B., Gáspári, Z., Nagy, A., Perczel, A. & Gráf, L.

Same fold with different mobility: backbone dynamics of small protease inhibitors from the desert locust, Schistocerca gregaria.

Biochemistry 43, 3376-84.

SGCI (Schistocerca gregaria chymotrypsin inhibitor) and SGTI (Sch. gregaria trypsin inhibitor) are small, 35-residue serine protease inhibitors with intriguing taxon specificity: SGTI is specific for arthropod proteases while SGCI is an excellent inhibitor on both mammalian and arthropodal enzymes. Here we report the cloning, expression, and (15)N backbone dynamics investigations of these peptides. Successful expression could be achieved by a "dimeric" construct similar to the natural precursor of the inhibitors. An engineered methionine residue between the two modules served as a unique cyanogen bromide cleavage site to cleave the precursor and physically separate SGCI and SGTI. The overall correlation time of the precursor (5.29 ns) as well as the resulted SGCI (3.14 ns) and SGTI (2.96 ns) are as expected for proteins of this size. General order parameters (S(2)) for the inhibitors are lower than those characteristic of well-folded proteins. Values in the binding loop region are even lower. Interestingly, the distribution of residues for which a chemical exchange (R(ex)) term should be considered is strikingly different in SGCI and SGTI. Together with H-D exchange studies, this indicates that the internal dynamics of the two closely related molecules differ. We suggest that the dynamic properties of these inhibitors is one of the factors that determine their specificity.

Reményi, A., Scholer, H. R. & Wilmanns, M.

Combinatorial control of gene expression.

Nat Struct Mol Biol 11, 812-5.

Revealing the molecular principles of eukaryotic transcription factor assembly on specific DNA sites is pivotal to understanding how genes are differentially expressed. By analyzing structures of transcription factor complexes bound to specific DNA elements we demonstrate how protein and DNA regulators manage gene expression in a combinatorial fashion.

Pál, G., Patthy, A., Antal, J. & Gráf, L.

Mutant rat trypsin selectively cleaves tyrosyl peptide bonds.

Anal Biochem 326, 190-9.

A double mutant of rat trypsinogen (Asp189Ser, DeltaAsp223) was constructed by site-directed mutagenesis. The recombinant protein was produced in Escherichia coli under the control of a periplasmic expression vector. The purified and enterokinase-activated enzyme was characterized by synthetic fluorogenic tetrapeptide and natural polypeptide substrates and by a recently developed method. In case of this latter method the specificity profile of the enzyme was examined by simultaneous digestion of a mixture of oligopeptide substrates each differing only at the P(1) site residue, and the results were analyzed by high-performance liquid chromatography. All these assays unanimously demonstrated that the recombinant proteinase lacks trypsin-like activity but acquired a rather unique selectivity: it preferentially hydrolyses peptide bonds C-terminal to tyrosyl residues. This narrow specificity should be useful in peptide-analytical applications such as sequence-specific fragmentation of large proteins prior to sequencing.

Nagy, A., Málnási-Csizmadia, A., Somogyi, B. & Lőrinczy, D.

Thermal stability of chemically denatured green fluorescent protein (GFP). A preliminary study.

Thermochim Acta 410, 161.

Nagy, A., Cacciafesta, P., Grama, L., Kengyel, A., Málnási-Csizmadia, A. & Kellermayer, M. S.

Differential actin binding along the PEVK domain of skeletal muscle titin.

J Cell Sci 117, 5781-9.

Parts of the PEVK (Pro-Glu-Val-Lys) domain of the skeletal muscle isoform of the giant intrasarcomeric protein titin have been shown to bind F-actin. However, the mechanisms and physiological function of this are poorly understood. To test for actin binding along PEVK, we expressed contiguous N-terminal (PEVKI), middle (PEVKII), and C-terminal (PEVKIII) PEVK segments of the human soleus muscle isoform. We found a differential actin binding along PEVK in solid-state binding, cross-linking and in vitro motility assays. The order of apparent affinity is PEVKII>PEVKI>PEVKIII. To explore which sequence motifs convey the actin-binding property, we cloned and expressed PEVK fragments with different motif structure: PPAK, polyE-rich and pure polyE fragments. The polyE-containing fragments had a stronger apparent actin binding, suggesting that a local preponderance of polyE motifs conveys an enhanced local actin-binding property to PEVK. The actin binding of PEVK may serve as a viscous bumper mechanism that limits the velocity of unloaded muscle shortening towards short sarcomere lengths. Variations in the motif structure of PEVK might be a method of regulating the magnitude of the viscous drag.

Marokházi, J., Lengyel, K., Pekar, S., Felföldi, G., Patthy, A., Gráf, L., Fodor, A. & Venekei, I.

Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes.

Appl Environ Microbiol 70, 7311-20.

Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (approximately 74, approximately 55, approximately 54, and approximately 37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokhazi, G. Koczan, F. Hudecz, L. Graf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.

Marokházi, J., Koczan, G., Hudecz, F., Gráf, L., Fodor, A. & Venekei, I.

Enzymic characterization with progress curve analysis of a collagen peptidase from an enthomopathogenic bacterium, Photorhabdus luminescens.

Biochem J 379, 633-40.

Kovács, M., Tóth, J., Nyitray, L. & Sellers, J. R.

Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin.ADP complex to actin.

Biochemistry 43, 4219-26.

The enzymatic and motor function of smooth muscle and nonmuscle myosin II is activated by phosphorylation of the regulatory light chains located in the head portion of myosin. Dimerization of the heads, which is brought about by the coiled-coil tail region, is essential for regulation since single-headed fragments are active regardless of the state of phosphorylation. Utilizing the fluorescence signal on binding of myosin to pyrene-labeled actin filaments, we investigated the interplay of actin and nucleotide binding to thiophosphorylated and unphosphorylated recombinant nonmuscle IIA heavy meromyosin constructs. We show that both heads of either thiophosphorylated or unphosphorylated heavy meromyosin bind very strongly to actin (K(d) < 10 nM) in the presence or absence of ADP. The heads have high and indistinguishable affinities for ADP (K(d) around 1 microM) when bound to actin. These findings are in line with the previously observed unusually loose coupling between nucleotide and actin binding to nonmuscle myosin IIA subfragment-1 (Kovács et al. (2003) J. Biol. Chem. 278, 38132.). Furthermore, they imply that the structure of the two heads in the ternary actomyosin-ADP complex is symmetrical and that the asymmetrical structure observed in the presence of ATP and the absence of actin in previous investigations (Wendt et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 4361) is likely to represent an ATPase intermediate that precedes the actomyosin-ADP state.

Kovács, M., Tóth, J., Málnási-Csizmadia, A., Bagshaw, C. R. & Nyitray, L.

Engineering lysine reactivity as a conformational sensor in the Dictyostelium myosin II motor domain.

J Muscle Res Cell Motil 25, 95-102.

Lys84 of skeletal muscle myosin located at the interface between the motor and neck domains has long been utilized as a useful chemical probe sensing motor domain conformational changes and tilting of the lever arm. Here we report the first site-directed mutagenesis study on this side chain and its immediate chemical environment. We made Dictyostelium myosin II motor domain constructs in which Lys84 was replaced by either a methionine or a glutamic acid residue and another mutant containing an Arg704Glu substitution. By following trinitrophenylation of the mutant constructs, we first unambiguously identify Lys84 as the reactive lysine in Dictyostelium myosin. Analysis of the reaction profiles also reveals that the Lys84-Arg704 interaction at the interface of two subdomains of the myosin head has a significant effect on Lys84 reactivity, but it is not the only determinant of this property. Our findings imply that the nucleotide sensitivity of the trinitrophenylation reaction is a general feature of conventional myosins that reflects similar changes in the conformational dynamics of the different orthologs during the ATPase cycle.

Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A. & Sellers, J. R.

Mechanism of blebbistatin inhibition of myosin II.

J Biol Chem 279, 35557-63.

Blebbistatin is a recently discovered small molecule inhibitor showing high affinity and selectivity toward myosin II. Here we report a detailed investigation of its mechanism of inhibition. Blebbistatin does not compete with nucleotide binding to the skeletal muscle myosin subfragment-1. The inhibitor preferentially binds to the ATPase intermediate with ADP and phosphate bound at the active site, and it slows down phosphate release. Blebbistatin interferes neither with binding of myosin to actin nor with ATP-induced actomyosin dissociation. Instead, it blocks the myosin heads in a products complex with low actin affinity. Blind docking molecular simulations indicate that the productive blebbistatin-binding site of the myosin head is within the aqueous cavity between the nucleotide pocket and the cleft of the actin-binding interface. The property that blebbistatin blocks myosin II in an actin-detached state makes the compound useful both in muscle physiology and in exploring the cellular function of cytoplasmic myosin II isoforms, whereas the stabilization of a specific myosin intermediate confers a great potential in structural studies.

Kardos, J., Yamamoto, K., Hasegawa, K., Naiki, H. & Goto, Y.

Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry.

J Biol Chem 279, 55308-14.

Jelinek, B., Antal, J., Venekei, I. & Gráf, L.

Ala226 to Gly and Ser189 to Asp mutations convert rat chymotrypsin B to a trypsin-like protease.

Protein Eng Des Sel 17, 127-31.

In a previous successful attempt to convert trypsin to a chymotrypsin-like protease, 15 residues of trypsin were replaced with the corresponding ones in chymotrypsin. This suggests a complex mechanism of substrate recognition instead of a relatively simple one that only involves three sites, residues 189, 216 and 226. However, both trypsin-->elastase and chymotrypsin-->trypsin conversion experiments carried out according to the complex model resulted in non-specific proteases with low catalytic activity. Chymotrypsin used in the latter studies was of B-type, containing an Ala residue at position 226. Trypsins, however, contain a conserved Gly at this site. The substantially decreased trypsin-like activity of the G226A trypsin mutant also suggests a specific role for this site in substrate binding. Here we investigate the role of site 226 by introducing the A226G substitution into chymotrypsin-->trypsin mutants which were constructed according to both the simple (S189D mutant) and the complex model (S(1) mutant) of specificity determination. The kinetic parameters show that the A226G substitution in the S(1) mutant increased the chymotrypsin-like activity, while the trypsin-like activity did not change. In contrast, this substitution in the S189D chymotrypsin mutant resulted in a 100-fold increase in trypsin-like activity and a trypsin-like specificity profile as tested on a competing oligopeptide substrate library. Additionally, the S189D+A226G mutant is the first trypsin-like chymotrypsin that undergoes autoactivation, an exclusive property of trypsinogen among pancreatic serine proteases.

Harmat, V., Gál, P., Kardos, J., Szilágyi, K., Ambrus, G., Végh, B., Náray-Szabó, G. & Závodszky, P

The structure of MBL-associated serine protease-2 reveals that identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interactions.

J Mol Biol 342, 1533-46.

A family of serine proteases mediates the proteolytic cascades of several defense mechanisms in vertebrates, such as the complement system, blood coagulation and fibrinolysis. These proteases usually form large complexes with other glycoproteins. Their common features are their modular structures and restricted substrate specificities. The lectin pathway of complement, where mannose-binding lectin (MBL) recognizes the carbohydrate structures on pathogens, is activated by mannose-binding lectin-associated serine protease-2 (MASP-2). We present the 2.25A resolution structure of the catalytic fragment of MASP-2 encompassing the second complement control protein module (CCP2) and the serine protease (SP) domain. The CCP2 module stabilizes the structure of the SP domain as demonstrated by differential scanning calorimetry measurements. The asymmetric unit contains two molecules with different CCP-SP domain orientations, reflecting increased modular flexibility at the CCP2/SP joint. This flexibility may partly explain the ability of the MASP-2 dimer to perform all of its functions alone, whereas the same functions are mediated by the much larger C1r2-C1s2 tetramer in the C1 complex of the classical pathway. The main scaffold of the MASP-2 SP domain is chymotrypsin-like. Eight surface loops determine the S1 and other subsite specificities. Surprisingly, some surface loops of MASP-2, e.g. loop 1 and loop 2, which form the S1 pocket are similar to those of trypsin, and show significant differences if compared with those of C1s, indicating that the nearly identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interactions.

Gráf, L., Szilágyi, L., Venekei, I.


Handbook of Proteolytic Enzym-es 2nd Edn (Barrett, A. J., Woessner, F., Rawlings, N., ed.), pp. 1495-1501. Elsevier Ltd, Amsterdam.

Conibear, P. B., Málnási-Csizmadia, A. & Bagshaw, C. R.

The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling.

Biochemistry 43, 15404-17.

The fluorescence properties of Dictyostelium discoideum (Dd) myosin II constructs containing a single tryptophan residue have revealed detailed information regarding nucleotide binding and hydrolysis steps. Here we extend these studies to investigate the influence of actin on nucleotide-induced fluorescence transients. The fluorescence from native actin tryptophan residues is not significantly perturbed on binding to myosin, although an apparent signal is detected as a consequence of a light scatter artifact. Actin has a minor effect on the response of W129, located at the entrance to the nucleotide-binding pocket, and reduces the forward rate constants for the isomerization(s) associated with binding of ATP, ATPgammaS, and ADP by 3-fold or less. The isomerization detected by W129 clearly precedes the dissociation of actin in the case of ADP and ATPgammaS binding. The fluorescence from the conserved W501 residue, located at the distal end of the relay helix, is very sensitive to the switch 2 and/or lever arm disposition. Consequently, the observed fluorescence emission intensity can be used to estimate the equilibrium constant between the pre- and post-power stroke conformations. Actin modulates this equilibrium by no more than 2-fold in the presence of nucleoside triphosphate. These data have implications for the mechanism of product release and suggest that actin activates another process in the mechanism, such as switch 1 movement and Pi release, rather than influencing the switch 2 equilibrium and lever arm position directly.

Bódis, E., Strambini, G. B., Gonnelli, M., Málnási-Csizmadia, A. & Somogyi, B.

Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

Biophys J 87, 1146-54.

The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.